

Readings

 Section 4.3 on pages 193-195

Diode models

Kizito NKURIKIYEYEZU, Ph.D.

Background

How would you find I_{D} and V_{D} for the circuit in Fig. 2

The current through the diode is the same as the current through the resistor

$$I = \frac{V_{DD} - V_D}{R} \tag{1}$$

Similarly, from our previous lecture

$$I = I_s \left(e^{v/v_{\tau}} - 1 \right)$$
 (2)

Diode model:

Combining Equation (1) and Equation (2) allows to solve for the unknowns

Kizito NKURIKIYEYEZU, Ph.D.

June 1. 2022

2/11

Kizito NKURIKIYEYEZU, Ph.D.

Readings are based on Sedra & Smith (2014), Microelectronic Circuits 7th edition.

Bold reading section are mandatory. Other sections are suggested but not required readings

Kizito NKURIKIYEYEZU, Ph.D.	

June 1, 2022

Background

- model —a mathematical description or electrical equivalent circuit that represents the behavior of a device or system
- In this lecture, we shall learn simplified diode models that are suited for circuit analysis:
 - Exponential model
 - Constant voltage-drop model
 - ideal diode model
 - small-signal model

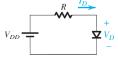


FIG 2. Illustrative diode circuit

- FIG 1. Illustrative diode circuit

The exponential diode model

The exponential diode model

- Most accurate model
- However, also most difficult to use:
 - For $V_{DD} > 0.5V$, Equation (3) holds true

$$I = I_{s} \left(e^{v_{D}/v_{T}} - 1 \right) \approx I_{s} \cdot e^{v_{D}/v_{T}} \quad (3)$$

Since $I_{D} = I_{R}$, then

$$I_s \cdot e^{V_{D}/V_T} = \frac{V_{DD} - V_D}{R}$$
(4)

- Combining Equation (3) and Equation (4) allows to solve for Vn and In
- The value of V_D and I_D can also be obtained by graphical analysis and Kizito NKURIKIYEYEZU, Ph.D. Diode model

June 1, 2023 4/11

Graphical analysis

- Plot the relationships of Equation (3) and Equation (4) on an i-v plane.
- The solution is the Q-point—which is the coordinates of the point of intersection of the two graphs
- The Q point is also known as the operating point, the bias point, or quiescent point1
- The Q-point is the steady-state voltage or current at a specified terminal of an active diode with no input signal applied 2
- The graphical analysis is only used for visualization of simple circuit but it is Kizito NKURIKIYEYEZU, Ph.D.

Diode models	June 1, 2022	5/11	

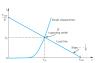


FIG 3. Illustration of the graphical analysis method using the exponential diode model

Iterative analysis¹

EXAMPLE—Find I_{D} and V_{D} for the circuit in Section 1 when $V_{DD} = 5V$ and R = 1k. Assume that the diode has a current of $I_D = 1 \, mA$ at a voltage of $V_D = 0.7 \, V$.

In is found by KVL

$$I_D = \frac{V_{DD} - V_D}{R} = \frac{5V - 0.5V}{1k} = 4.5$$
(5) V_{DD}

V_D is deducted from

$$V_2 - V_1 = 2.3 V_T \cdot log(l_2/l_1)$$
 (6)

Since $2.3V_T = 60mV$, then

 $V_2 = V_1 + 0.06 \cdot log(l_2/l_1)$ (7)Kizito NKURIKIYEYEZU, Ph.D

6/11

Iterative analysis¹

- The first iteration assumes $V_1 = 0.7V$, $I_1 = 1 mA$ and $l_2 = 4.3 mA$ that we calculated earlier. Thus, $V_D = 0.738 V$
- The second iteration goes through the same process

$$D = \frac{V_{DD} - V_D}{R} = \frac{5V - 0.738V}{1k} = 4.262mA \qquad (8)$$

$$V_2 = V_1 + 0.06 \cdot log(k/l_1) = 0.738V + 0.06 \cdot log(4.262/4.3) = 0.738V$$
(9)

The iteration can continue but the second iteration vielded values close to the first iteration, there is no reason to continue any further.

Thus,
$$I_D \approx 4.262 mA$$
 and $V_D \approx 0.738 V$

See detailed algebraic solution at

https://en.wikipedia.org/wiki/Diode modelling#Iterative solution Kizito NKURIKIYEYEZU, Ph.D. Diode models June 1, 2022

Iterative analysis—Practicality

This method is simple and very accurate

Kizito NKURIKIYEYEZU, Ph

- However, it is very slow and not practical. Circuit design requires evaluating various possibility before making a suitable design
- In practice, analog circuit design is something of an art. Although it is possible to predict the behavior of a very simple circuit mathematically, there are so many factors to consider in a more complicated circuit that the calculations become impossibly convoluted
- It is best to use less accurate methods and verify the design with computer analysis tools such as SPICE

Diode models The Constant-Voltage-Drop Model

The simplest and most widely used diode model in the initial phases of analysis and design

Since the forward-conducting diode has a voltage drop that varies in a relatively narrow range (usually between 0.6 to 0.8 V), assumes that that the slope of the i-v curve is vertical at

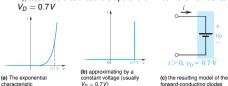


FIG 4. Development of the diode constant-voltage-drop model: Kizito NKURIKIYEYEZU, Ph.D. Diode models June 1, 2022

The Constant-Voltage-Drop
Model

The Ideal-Diode Model

Kizito NKURIKIYEYEZU, Ph D

- Useful for applications that involve voltages much greater than the diode voltage drop
- In this case, we may neglect the diode voltage drop altogether while calculating the diode current.
- In summary, the ideal diode model assumes that the slope of i-v curve is vertical at $V_D = 0 V_{i_1}$

June 1, 2022

Diode models

Summary —When to use these models

Diode models

- exponential model
 - low voltages

Kizito NKURIKIYEYEZU, Ph.D

- less complex circuits
- emphasis on accuracy over practicality
- constant voltage-drop mode
 - medium voltages = 0.7V
 - more complex circuits
 - emphasis on practicality over accuracy

- ideal diode model
 - high voltages » 0.7V
 - very complex circuits
 - cases where a difference in voltage by 0.7V is negligible

June 1, 2022 11 / 11

- small-signal model
 - Coming soon!